Skip to contents

Use to identify extreme values, based on cleaned note length, in a dataset. Can be used after applying firstnchar()

Usage

extremeid(dataset, extreme, clean_notes, pageid, group_list = NA)

Arguments

dataset

data frame of notes

extreme

number of standard deviations above the mean character length that defines an extreme value

clean_notes

column name of clean notes to provide summary values for

pageid

column name for page number

group_list

list of variables to group by for cleaned notes

Value

a data frame

Examples

test_dataset <- data.frame(ID=c("1","1","2","2","1", "3","3"),
Notes=c("The","The cat","The","The dog","The cat ran",
"the chicken was chased", "The goat chased the chicken"),
Page=c(1,2,1,2,3,1,2))
cleaned_dataset<-
firstnchar(dataset=test_dataset,notes="Notes",char_diff=3,
identifier="ID",pageid="Page")
extremeid(dataset=cleaned_dataset,clean_notes="page_notes",extreme=2,pageid="Page")
#>   ID                       Notes Page                  page_notes edit_distance
#> 1  1                         The    1                         The            NA
#> 2  1                     The cat    2                         cat             0
#> 3  2                         The    1                         The            NA
#> 4  2                     The dog    2                         dog             0
#> 5  1                 The cat ran    3                         ran             0
#> 6  3      the chicken was chased    1      the chicken was chased            NA
#> 7  3 The goat chased the chicken    2 The goat chased the chicken            17
#>   note_length  outlier      mean       sd extreme_value
#> 1           3 31.27264  9.333333 10.96966         FALSE
#> 2           3 38.71281 11.000000 13.85641         FALSE
#> 3           3 31.27264  9.333333 10.96966         FALSE
#> 4           3 38.71281 11.000000 13.85641         FALSE
#> 5           3       NA  3.000000       NA            NA
#> 6          22 31.27264  9.333333 10.96966         FALSE
#> 7          27 38.71281 11.000000 13.85641         FALSE